
ПОВОЗВИЗИЧЕСКИХ СВОЙСТВ ПОВЕРХНОСТИ, СОВРЕМЕННЫЕ И ТЕОРЕТИЧЕСКИЕ МЕТОДЫ, ХАРАКТЕРИСТИК РАЗЛИЧНЫХ МАТЕРИАЛОВ.

§ 1.1. Поверхностное натяжение и поверхностное напряжение

1.1.1. Поверхностная вода (5). 1.1.2. Поверхности твердых

Глава 2. Методы экспериментальных исследований поверхностных свойств твердых тел

² 2.1. Методы исследования атомной структуры

2.1.1. Дифракция медленных электронов (52). 2.1.2. Дифракция быстрых электронов (53). 2.1.3. Дифракция рентгеновских лучей (59). 2.1.4. Рассеяние нейтронов (61). 2.1.5. Рассеяние ионов и нейтральных атомов (61). 2.1.6. Методы электронной спектроскопии (67). 2.1.7. Методы полевой ионной и электронной микроскопии. Сцинтилляционная туннельная микроскопия (72).

Глава 2. Методы исследования электронных свойств

2.2.1. Методы электронной спектроскопии (80). 2.2.2. Измерение работы выхода и поверхностной ионизации (82). 2.2.3. Методы исследования поверхностных магнитных свойств: дифракция медленных спин-поляризованных электронов (84).

Глава 2. Методы исследования динамики решеток, диффузии и механизмов роста пленок

2.3.1. Метод ИК-спектроскопии (86). 2.3.2. Методы электронной спектроскопии: метод характеристических потерь энергии электро-
нов и метод оже-спектроскопии (88). 2.3.3. Методы полевой ионной и электронной микроскопии. Сканирующая туннельная микроскопия (93).

§ 2.4. Методы измерения термодинамических характеристик адсорбированных пленок ... 93
2.4.1. Измерения энергии адсорбции (93). 2.4.2. Измерения теплопроводности адсорбированных пленок (95).

Глава 3. Локализованные состояния и поверхностные элементарные возбуждения .. 97
Введение .. 97
§ 3.1. Электронные поверхностные состояния 98
§ 3.2. Поверхностные плазмы .. 104
3.2.1. Объемные плазменные колебания и плазмы (105).
3.2.2. Поверхностные плазмы (111).
§ 3.3. Поверхностные фоны и поляритоны 115
3.3.1. Поверхностные фоны (115). 3.3.2. Объемные и поверхностные поляритоны (121).
§ 3.4. Поверхностные магниты .. 126

Глава 4. Поверхностные свойства твердых тел и способы их опи- сания ... 131
Введение .. 131
§ 4.1. Основные этапы и направления развития теории металлической поверхности ... 132
§ 4.2. Исходные уравнения метода функционала плотности при исследовании поверхностных свойств металлов ... 136
4.2.1. Теория функционала плотности в формулировке Хэм-бергаКона (137). 4.2.2. Вариационный принцип Хэм-бергаКона (138).
4.2.3. Самосогласованные уравнения Кона-Шмак (139).
4.2.4. Метод пробных функций. Приближение Томаса-Ферми (143).
§ 4.3. Применение МФП к расчету работы выхода электрона с поверхности металла .. 148
§ 4.4. Явление адгезии и способы его описания 151
§ 4.5. Адсорбция на металлических поверхностях 153
4.5.1. Модель однородного фона для субстрата и адсорбата (154).
4.5.2. Модель однородного фона для субстрата и адсорбата (155).
4.5.3. Реестровая модель субстрата (158).
§ 4.6. Выходы .. 161

Глава 5. Расчет поверхностных характеристик металлов с использо- зованием метода функционала электронной плотности 164
Введение .. 164
§ 5.1. Методика расчета поверхностной энергии 165
5.1.1. Расчет поверхностной энергии металлов в рамках модели "желе" (165). 5.1.2. Учет влияния дискретности кристаллической
нов и метод оке-спектроскопии (88). 2.3.3. Методы полевой ионной и электронной микроскопии. Сканирующая туннельная микроскопия (93).

§ 2.4. Методы измерения термодинамических характеристик адсорбированных пленок

2.4.1. Измерения энергии адсорбции (93). 2.4.2. Измерения теплопроводности адсорбированных пленок (95).

Глава 3. Локализованные состояния и поверхностные элементарные возбуждения

Введение

§ 3.1. Электронные поверхностные состояния

§ 3.2. Поверхностные плазмы

3.2.1. Объемные плазменные колебания и плазмоны (105). 3.2.2. Поверхностные плазмы (111).

§ 3.3. Поверхностные фоны и поляритоны

3.3.1. Поверхностные фоны (115). 3.3.2. Объемные и поверхностные поляритоны (121).

§ 3.4. Поверхностные магнионы

Глава 4. Поверхностные свойства твердых тел и способы их описания

Введение

§ 4.1. Основные этапы и направления развития теории металлической поверхности

§ 4.2. Исходные уравнения метода функционала плотности при исследовании поверхностных свойств металлов

4.2.1. Теория функционала плотности в формуларке Хэнбера–Кона (137). 4.2.2. Вариационный принцип Хэнбера–Кона (138). 4.2.3. Самосогласованные уравнения Кона–Шмей (139). 4.2.4. Метод бутовых функций. Приближение Томаса–Ферми (143).

§ 4.3. Применение МФП к расчету работы выхода электрона с поверхности металла

§ 4.4. Наличие адгезии и способы его описания

§ 4.5. Адсорбция на металлических поверхностях

4.5.1. Модель однородного фона для субстрата и адсорбата (154). 4.5.2. Модель однородного фона для субстрата (155). 4.5.3. Решеточная модель субстрата (158).

§ 4.6. Выходы

Глава 5. Расчет поверхностных характеристик металлов с использованием метода функционала электронной плотности

Введение

§ 5.1. Методика расчета поверхностной энергии

5.1.1. Расчет поверхностной энергии металлов в рамках модели "желе" (165). 5.1.2. Учет влияния дискретности кристаллической решетки на величину поверхностной энергии (168). 5.1.3. Учет эффективов релаксации поверхностных металлических поверхностей (177). 5.1.4. Учет влияния градиентных поправок 4-го порядка в расчетах поверхностной энергии металлов (181).

§ 5.2. Методика расчета работы выхода электрона с поверхностей металлов

§ 5.3. Применение потенциала Хейн–Абаренкова при расчетах поверхностных характеристик металлов

Глава 6. Расчет адгезионных характеристик металлов и их расплавов в рамках метода функционала плотности

Введение

§ 6.1. Основные уравнения. Методика расчета

§ 6.2. Результаты расчетов и их обсуждение

§ 6.3. Учет влияния промежуточного дисперсионного слоя на адгезию металлов

§ 6.4. Учет влияния эффектов релаксации поверхности на адгезию металлов

§ 6.5. Адгезия металла и ионного кристалла

Глава 7. Расчет адгезионных характеристик металлов, полупроводников и сложных соединений на основе дисперсионного формализма

Введение

§ 7.1. Теоретические принципы определения адгезионных характеристик контакта поверхностей

§ 7.2. Адгезия металлов

§ 7.3. Адгезия полупроводников

§ 7.4. Расчет адгезионных характеристик контакта металлов и полупроводников с диэлектриком

§ 7.5. Адгезия сложных соединений

§ 7.6. Описание методики расчета адгезионных свойств для алмазоподобных покрытий

§ 7.7. Методы и технические средства измерения адгезии тонких пленок

7.7.1. Применение метода индентирования для определения адгезионной прочности покрытий (248). 7.7.2. Метод контензации разности потенциалов для определения состояния модифицированной поверхности (251). 7.7.3. Исследование адгезионных характеристик износстойких покрытий поверхностей пар трения (254).

Глава 8. Трение поверхностей твердых тел при отсутствии смазки (сухое трение)

Введение

§ 8.1. Виды трения и законы сухого трения. Износ

§ 8.2. Принципы выбора оптимальных пар материалов для несмазывающихся узлов трения
§8.3. Методика и расчет адгезионной составляющей силы трения металлов в условиях сухого трения .. 274
§8.4. Методика и расчет характеристик трения металлов с твердосмазочными материалами, оксидными и алмазоподобными износостойкими покрытиями .. 286
§8.5. Применение методик расчета адгезионных и триботехнических характеристик для выбора оптимальных пар трения .. 293

Глава 9. Теоретические модели и методы описания адсорбции атомов металла на металлических поверхностях .. 302
Введение. Основные сведения об адсорбции .. 302
§9.1. МногоPARAMЕТРИЧЕСКАЯ МОДЕЛЬ НЕАКТИВИРОВАННОЙ АДСОРБЦИИ АТОМОВ ШЕЛОЧНЫХ МЕТАЛЛОВ НА МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЯХ .. 304
9.1.1. Методика и результаты расчета энергетических характеристик адсорбции (305). 9.1.2. Методика и результаты расчета работы выхода электронов с металлической поверхности, модифицированной адсорбатом (318).
§9.2. Модель активированной адсорбции атомов металлов на металлических поверхностях .. 325
§9.3. Влияние адсорбции атомов металлов на работу выхода электрона с металлических поверхностей .. 338
9.3.1. Основные уравнения. Методика расчета работы выхода (339). 9.3.2. Анализ результатов расчета работы выхода (341).

Глава 10. Ферромагнетизм ультратонких пленок переходных металлов .. 347
Введение .. 347
§10.1. Адсорбция ионов переходных металлов на металлических поверхностях с образованием субмонослойных ферромагнитных пленок .. 348
§10.2. Активированная адсорбция ионов. Влияние эффектов ферромагнитного упорядочения .. 363

Приложение. Определение минимума функции N переменных .. 372
Список литературы .. 376

Предисловие

Исследование физических свойств поверхности твердого тела является актуальным научным направлением [180, 191, 203, 498]. Потребности современного производства (создание точноплановых структур в микроэлектронике, совершенствование технологических методов управления свойствами поверхностей деталей узлов трения с целью повышения их работоспособности, износостойкости и долговечности) требуют детального учета факторов, влияющих на величину взаимодействия разнородных материалов, соприкасающихся своими поверхностями.

Явление возникновения связи между поверхностными слоями разнородных конденсированных тел, приведенных в соприкосновение, получило название адгезии. Адгезия зависит от природы контактирующих тел, свойств их поверхностей и площади контакта. С физической точки зрения адгезия определяется силами межмолекулярного взаимодействия, наличием ионной, ковалентной, металлической и других типов связей. Возникает необходимость определения характеристик адгезионного взаимодействия различных материалов с точки зрения как прикладной, так и фундаментальной науки о поверхностных явлениях [80, 82, 96].

Однако значение адгезионной прочности зависит не только от вида связи между телами, вступившими в контакт, но и от метода ее измерения, а также от способа отрыва [12, 217]. Например, производя отрыв плоскости от подложки с различными скоростями, можно получить разные значения адгезионной прочности. Методов неразрушающего контроля адгезионной прочности, дающих надежные результаты, к настоящему времени пока не существует. На результаты измерения адгезионной прочности может повлиять и напряженное состояние границы раздела между плоской и подложкой вследствие термических или усадочных явлений в материалах. В процессе напыления на поверхности подложки может образоваться покрытие слой окисла, оказывающий заметное влияние на адгезию покрытия. Неизбежная шероховатость поверхностей сред, вступающих в контакт, определяет явление зазора между поверхностями. Все это указывает на сложность получения достоверных экспериментальных значений адгезионной прочности покрытий, непосредственного определения роли межзазоров, а в особенностях прогнозирования их влияния на сцепление тел.

В связи с этим возрастает роль теоретического подхода к определению адгезионных характеристик различных материалов. При этом критерием правильности той или иной модели адгезионного взаимодействия и предлагаемых ею значений адгезионных характеристик может служить сопоставление рассчитанных и измеренных значений